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Equivalence Theorem for Higher Order Equations

C. G. Bollini,1 L. E. Oxman,2 and M. C. Rocca1
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We show that the theory of an nth-order field equation, minimally coupled to
electromagnetism , is completely equivalent to the theory of n independent second-
order equations, also minimally coupled to the electromagnetic field. The
equivalence is shown to hold as an algebraic identity between the respective
matrix elements for a given order of the perturbative solution. A general functional
proof is also given. The equivalence shows that the higher order theory is both
renormalizable and unitary.

1. INTRODUCTION

We have recently shown that the theory of a field obeying a higher order

equation, minimally coupled to the electromagnetic field, is equivalent to

that of a set of fields obeying second-order equations of motion (Bollini et
al., 1997a, b). The general proof was based on functional methods, and was

rather symbolic (or abstract) in character. Here we intend to develop mainly

the algebraic aspect of the equivalence.
We take the equation found in Bollini and Giambiagi (1985) when

studying supersymmetry in spaces of arbitrary dimensions, namely

(Nn 2 m 2n) w 5 0 (1)

This equation implies n modes of propagation for the scalar field w (Schnitzer

and Sudarshan, 1961; Barci et al., 1994). Each mode is characterized by a

particular mass parameter. In fact, equation (1) can be factorized into n
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Klein±Gordon factors:

(Nn 2 m 2n) w [ &
n

s 5 1
(N 2 esm

2) w (2)

where

es 5 e (2 p i/n)(s 2 1) (s 5 1, 2, . . . , n) (3)

When we introduce the electromagnetic field by replacing the common deriva-

tive with the gauge covariant one, the D’ Alembertian N is changed into

N ® N8 5 ( - m 2 ieA m )( - m 2 ieA m )

N8 5 N 2 2ieA ? - 2 e 2A 2 ( - m A m 5 0) (4)

Equation (1) is transformed into

(N8n 2 m 2n) w 5 0 (5)

From (4) we get for N8n a polynomial in the charge e:

N8n 5 Nn 1 eIÄ (n)
1 1 e 2IÄ (n)

1 1 ? ? ? 1 e 2n IÄ (n)
2n

5 Nn 1 IÄ (eA ) (6)

With (6), equation (5) takes the form

(Nn 2 m 2n) w 5 2 IÄ (eA ) w (7)

The field w obeys an equation of order n in the D’ Alembertian operator, with

an interaction which is a polynomial of degree 2n in the coupling constant.
Our task here will be to examine the consequences of the interaction

implied by the right-hand side of equation (7).

Of course, any of the interaction terms IÄ nl can be obtained from

N8n 5 (N 2 2ieA ? - 2 e 2A 2)n (8)

The first one comes from a factor 2 2ieA ? - and n 2 1 D’ Alembertian factors:

IÄ (n)
1 5 2 2i (Nn 2 1 A ? - 1 Nn 2 2 A ? - N 1 ? ? ?

1 NA ? - Nn 2 2 1 A ? - Nn 2 1) (9)

When we take the Fourier transform of (9), the derivative operator 2 i - m is

transformed into the momentum vector p m . The D’ Alembertian is transformed
into 2 p 2. The vector A m leaves its place to the polarization vector e m of the

photon. The fact that the momentum p m before the emission of the photon

is different from the momentum q m after the emission is related to the fact

that - m does not commute with A n .
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Thus the Fourier transform of (9) gives rise to

IÄ (n)
1 5 2( 2 1)n 2 1( p2(n 2 1) e ? p 1 p 2(n 2 2) e ? pq2 1 ? ? ? 1 e ? pq2(n 2 1))

q 5 p 2 k, e ? p 5 e ? q

i.e.,

IÄ (n)
1 5 2( 2 1)n 2 1P n 2 1( p2, q 2) e ? p (10)

where

P t(x, y) 5 o
a 1 b 5 t

x ay b 5 o
t

s 5 0

x (t 2 s)y s (11)

The second order in e contains two factors A ? - and one factor A 2, i.e.,

IÄ (n)
2 5 2 (Nn 2 1A 2 1 Nn 2 2A 2N 1 ? ? ? 1 A 2Nn 2 1)

2 4(Nn 2 2A ? - A ? - 1 Nn 2 3A ? - NA ? -

1 Nn 2 3A ? - A ? - N 1 ? ? ? 1 A ? - A ? - Nn 2 2)

whose Fourier transform is

I (n)
2 5 2 2P n 2 1( p2

1, p 2
2)( 2 1)n 2 1 e 1 ? e 2

1 4( 2 1)n 2 2P n 2 2( p2
1, p 2, p 2

2) e 1 ? p1 e 2 ? p2

1 4( 2 1)n 2 2P n 2 2( p2
1, q 2, p 2

2) e 1 ? p2 e 2 ? p1 (12)

where

p2 5 p1 1 k1 1 k2; p 5 p1 1 k1; q 5 p1 2 k2

P t(x, y, z) 5 o
a 1 b 1 c 5 t

x ay bz c (13)

We can see that the interaction terms give rise to the coefficients P t(x1,

x2, . . . ) whose main properties are going to be specified in the next section.

2. VERTEX FACTORS

Each factor P t(x1, . . . , xs) is a sum over all monomials of degree t,
formed with products of powers of its arguments:

P t(x1, . . . , xs) 5 o
a1 1 ? ? ? 1 as 5 t

x a1
1 x a2

2 ? ? ? x as
3 (14)

where all al are nonnegative integers.
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They have some interesting (and useful) properties. We define

P t 5 0 for t , 0

From (14) we get

P 0(x1, . . . , xs) 5 1; P 1(x1, . . . , xs) 5 o
s

l 5 1

xl; P t(x) 5 x t (15)

All P t(x1, . . . , xs) are symmetrical homogeneous functions of their arguments:

P t(x1, . . . , xi , . . . , xj , . . . , xs) 5 P t(x1, . . . , xj , . . . , xi , . . . , xs) (16)

P t( a x1, a x2, . . . , a xs) 5 a tP t(x1, x2, . . . , xs) (17)

We can also write (14) as

P t(x1, . . . , xs) 5 o
t

a1 5 0

x a1
1 o

a2 1 ? ? ? 1 as 5 t 2 a1

x a2
2 ? ? ? x as

s

P t(x1, . . . , xs) 5 o
t

a 5 0

x a
1P

t 2 a(x2, . . . , xs) (18)

Or, more generally,

P t(x1, . . . , xs) 5 o
t

a 5 0

P a(x1, . . . , xi)P
t 2 a(xi 1 1, . . . , xs) (19)

From (15) we have

x1P
t(x1, . . . , xs) 5 o

t

a 5 0

x a 1 1
1 P a(x2, . . . , xs)

o
t 1 1

b 5 1

x b
1P

t 1 1 2 b(x2, . . . , xs) 5 o
t 1 1

b 5 0

x b
1P

t 1 1 2 b(x2, . . . , xs) 2 P t 1 1(x2, . . . , xs)

x1P
t(x1, . . . , xs) 5 P t 1 1(x1, x2, . . . , xs) 2 P t 1 1(x2, . . . , xs) (20)

Also, due to (16),

x2P
t(x1, . . . , xs) 5 P t 1 1(x1, x2, . . . , xs) 2 P t 1 1(x1, x3, . . . , xs)

Then

(x1 2 x2)P
t(x1, . . . , xs) 5 P t 1 1(x1, x3, . . . , xs)

2 P t 1 1(x2, x3, . . . , xs) (21)
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In particular,

(x1 2 x2)P
t(x1, x2) 5 P t(x1) 2 P t(x2) 5 x t

1 2 x t
2 (22)

With es given by (3), we can write (22) in the form

(x1 2 esx2)P
n 2 1 (x1, esx2) 5 x n

1 2 e n
sx

n
2 5 x n

1 2 x n
2 (s 5 1, . . . , n)

(23)

Equation (23) implies that (x1 2 esx2) is a factor of x n
1 2 x n

2 for s 5 1, 2,

. . . , n. Therefore

x n
1 2 x n

2 5 &
n

s 5 1
(x1 2 esx2) (24)

According to (11)

P n 2 1(x, esy) 5 o
n 2 1

l 5 0
x n 2 1 2 le l

sy
l

so that

o
n

s 5 1

P n 2 1 (x, esy) 5 o
n

s 5 1
o
n 2 1

l 5 0

x n 2 1 2 l e l
sy

l

But

o
n

s5 1

e l
s 5 o

n

s 5 1

e (2 p il/n)(s 2 1) 5
1 2 e 2 p il

1 2 e 2 p il/n 5 n ( d l,0 1 d l, n 1 d l,2n 1 d l,3n 1 ? ? ? )

(25)

Then

o
n

s 5 1

P n 2 1(x, es y) 5 nxn 2 1 5 P n 2 1(x, x) (26)

We also have

o
n

s 5 1

P n 2 1 (x, esz)P
n 2 1 ( y, esz) 5 o

n

s5 1
o
n 2 1

l 5 0

x n 2 1 2 le l
s z l o

n 2 1

m 5 0

y n 2 1 2 m e m
s z m

5 o
n

l 5 1
o
n

m 5 1

x n 2 ly n 2 mz l 1 m 2 2 o
n

s5 1

e l 1 m 2 2
s
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Taking into account (25), we find

o
n

s 5 1

P n 2 1(x, esz) P n 2 1( y, esz) 5 nxn 2 1y n 2 1 1 nznP n 2 2 (x, y) (27)

There are similar relations with products of three or more Pn 2 1 factors. They

will be useful later to prove the equivalence for closed loops (see Section

5). We quote without proof the relation:

o
n

s 5 1
P n 2 1 (x, es m )P n 2 1( y, es m )P n 2 1(z, es m )

5 o
n 2 1

a,b,c 5 0

x n 2 1 2 a y n 2 1 2 b z n 2 1 2 c m a 1 b 1 cn ( d a 1 b 1 c,0 1 d a 1 b 1 c, n d a 1 b 1 c,2n)

5 nxn 2 1y n 2 1x n 2 1 1 n m nQ (x, y, z) 1 n m 2nP n 2 3(x, y, z) (28)

where

Q (x, y, z) 5 o
n 2 1

a,b,c 5 0

x n 2 1 2 ay n 2 1 2 bz n 2 1 2 c d a 1 b 1 c, n

Also, it is easy to show that

P t(x, y, z) 5 o
t

s 5 0

y t 2 sP s (x, x) o
t

s 5 0

(s 1 1)x s y t 2 s (29)

and, by repeated use of (20),

[P t(x, y)]2 5 (t 1 1)P 2t(x, y) 2 o
t 2 1

s 5 0
(t 2 s) (x 2t 2 sy s 1 y 2t 2 sx s) (30)

3. COMPTON EFFECT

We will now evaluate the matrix element for the Compton effect on a

charged particle obeying equation (7). The corresponding propagator obeys

(Nn 2 m 2n)GÄ (n) 5 i d (31)

By taking the Fourier transform of (31) we get

G (n) 5
( 2 1)ni

p 2n 2 ( 2 m 2)n (32)

Of course, for a complete determination of G(n) it is necessary to specify the

behavior near the poles. However, we are not going to worry about this point,

as (32) is all we need for our purpose (see Sections 6 and 7).
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To exhibit explicitly the poles of (32), we use the identity

1

x n 2 a n 5
1

nan 2 1 o
n

s 5 1

es

x 2 esa
; es 5 e (2 p i/n)(s 2 1) (33)

With x 5 p 2 and a 5 2 m 2, we get

G (n) 5
2 i

n 2 m 2(n 2 1) o
n

s 5 1

es

p 2 1 esm
2 (34)

The first term of (34) (s 5 1) represents the Klein±Gordon propagator.

The other terms correspond to the other modes of propagation. The factor

(nm2(n 2 1)) 2 1 is the relative normalization of the wave function whose propaga-

tor is defined by (31), with respect to that of the usual second-order equation.

To obtain an n-independent normalization we have to divide each external

line of w by the factor (nm2(n 2 1))1/2.
We are now ready to evaluate the matrix elements corresponding to any

physical process for a higher order equation of the family (5) or (7).

For the Compton effect, the initial and final momenta of the charged

bradyon are p1 and p2. The incoming (resp. outgoing) photon has polarization

e 1 and momentum k1 (resp. e 2 and k2).

The lowest order Feynman diagrams are shown in Fig. 1.
With the interaction vertices (10) and (12) and the propagator (32), we

can write the matrix element:

M (n) 5 [2i ( 2 1)n 2 1 e 1 ? p1P
n 2 1( p2

1, p 2)]
( 2 1)ni

p 2n 2 ( 2 m 2)n

3 [2i ( 2 1)n 2 1 e 2 ? p2P
n 2 1( p2, p 2

2)]

1 [2i ( 2 1)n 2 1 e 2 ? p1P
n 2 1( p2

1, q 2)]

3
( 2 1)ni

q 2n 2 ( 2 m 2)n [2i ( 2 1)n 2 1 e 1 ? p2P
n 2 1(q 2, p 2

2)]

1 i ( 2 1)n{4 e 1 ? p1 e 2 ? p2P
n 2 2( p2

1, p 2, p 2
2)

1 4 e 2 ? p1 e 1 ? p2 P n 2 2( p2
1, p 2, p 2

2)

1 2 e 1 ? e 2P
n 2 1 ( p2

1, p 2
2)}

M (n) 5 4i ( 2 1)n H e 1 ? p1 e i2 ? p2 F P n 2 1 ( p2
1, p 2)P n 2 1( p2, p 2

2)

p 2n 2 ( 2 m 2)n

2 P n 2 2 ( p2
1, p 2, p 2

2) G
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Fig. 1.

1 e 2 ? p1 e 1 ? p2 F P n 2 1( p2
1, q 2)P n 2 1(q 2, p 2

2)

q 2n 2 ( 2 m 2)n 2 P n 2 2 ( p2
1, q 2, p 2

2) G J
1 2i ( 2 1)n e 1 ? e 2P

n 2 1( p2
1, p 2

2) (35)

Taking p 2
1 5 p 2

2 5 2 m 2 in (35), we get, using (22),

M (n) 5 4i ( 2 1)n H e 1 ? p1 e 2 ? p2

p 2 1 m 2 [P n 2 1( 2 m 2, p 2)

2 ( p2 1 m 2)P n 2 2 ( 2 m 2, p 2, 2 m 2)]

1
e 2 ? p1 e 1 ? p2

q 2 1 m 2 [P n 2 1(q 2, 2 m 2)

2 (q 2 1 m 2) P n 2 2( 2 m 2, q 2, 2 m 2)] J
1 2i ( 2 1)n e 1 ? e 2P

n 2 1( 2 m 2, 2 m 2) (36)

But, according to (21),

(x 1 m 2)P n 2 2( 2 m 2, x, 2 m 2) 5 P n 2 1(x, 2 m 2) 2 P n 2 1( 2 m 2, 2 m 2)

5 P n 2 1(x 2 m 2) 1 ( 2 1)nnm2

So, we finally obtain for the normalized matrix element M (n) 5
(nm2(n 2 1)) 2 1M (n)

M(n) 5 2 4i 1 e 1 ? p1 e 2 ? p2

p 2 1 m 2 1
e 1 ? p2 e 2 ? p1

q 2 1 m 2 2 2 2i e 1 ? e 2 (37)

Equation (37) shows the interesting fact that, no matter how high the order

of the equation is, we always end up with the matrix element corresponding

to the second-order Klein±Gordon equation, coupled to the electromagnetic
field (Nishijima, 1969).

It is also possible (and interesting) to answer the following question:

What is the amplitude for the Compton effect to produce a transition from

the bradyon mode to any other mode of w ?
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To answer the question, we take again the matrix element (35). But this

time we choose p 2
2 5 2 esm

2, where es is given by (3).

The new matrix element M (n)
s is proportional to Pn 2 1(m 2, esm

2). Using
(19), we get

P n 2 1(x, esx) 5 o
n 2 1

l 5 0
x n 2 1 2 le l

sx
l 5 x n 2 1 o

n 2 1

l 5 0
e l

s 5 nxn 2 1 d s,1 (38)

so that

M (n)
s 5 M (n) d s,1 (39)

Equation (34) implies that the probability amplitude for a change from a

bradyon mode to any other different mode is exactly zero.

4. DOUBLE PHOTON SCATTERING

For a clear understanding of the algebraic mechanism which shows the
equivalence between the higher order theory and the second one, we consider

a process involving three external photons. The pertinent Feynman diagrams

are shown in Fig. 2.

Fig. 2.
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We will only write down the matrix elements corresponding to the

diagrams A1, B1, and C. All other matrix elements follow mutatis mutandis.

The first- and second-order vertices are explicitly given by (10) and (12).
The third-order vertex can be deduced in a similar way:

A1 5 8i ( 2 1)n e 1 ? p1 e 2 ? p e 3 ? p2

P n 2 1( p2
1, p 2)P n 2 1( p2, a 2)P n 2 1(a 2, p 2

2)

( p2n 2 ( 2 m 2)n)(a 2n 2 ( 2 m 2)n)

(40)

B1 5 8i ( 2 1)n e 1 ? p1

P n 2 1( p2
1, p 2)

p 2n 2 ( 2 m 2)n

3 [ e 2 ? p e 3 ? p2P
n 2 2( p2, a 2, p 2

2) 1 e 3 ? p e 2 ? p2P
n 2 2( p2, b 2, p 2

2)]

1 4i ( 2 1)n e 1 ? p1 e 2 ? e 3

P n 2 1( p2
1, p 2)P n 2 1( p2, p 2

2)

p 2n 2 ( 2 m 2)n (41)

C 5 8i ( 2 1)n 2 1{ e 1 ? p1 e 2 ? p e 3 ? p2P
n 2 3 ( p2

1, p 2, a 2, p 2
2)

1 e 1 ? p1 e 3 ? p e 2 ? p2P
n 2 3( p2

1, p 2, b 2, p 2
2)

1 e 2 ? p1 e 1 ? q e 3 ? p2P
n 2 3( p2

1, q 2, a 2, p 2
2)

1 e 2 ? p1 e 3 ? q e 1 ? p2P
n 2 3( p2

1, q 2, c 2, p 2
2)

1 e 3 ? p1 e 1 ? r e 2 ? p2P
n 2 3( p2

1, r 2, b 2, p 2
2)

1 e 3 ? p1 e 2 ? r e 1 ? p2P
n 2 3( p2

1, r 2, c 2, p 2
2)}

1 4i ( 2 1)n 2 1{ e 1 ? p1 e 2 ? e 3P
n 2 2( p2

1, p 2, p 2
2)

1 e 2 ? p1 e 1 ? e 3P
n 2 2( p2

1, q 2, p 2
2) 1 e 3 ? p1 e 1 ? e 2P

n 2 2( p2
1, r 2, p 2

2)

1 e 1 ? p2 e 2 ? e 3P
n 2 2( p2

1, c 2, p 2
2) 1 e 2 ? p2 e 1 ? e 3P

n 2 2( p2
1, b 2, p 2

2)

1 e 3 ? p2 e 1 ? e 2P
n 2 2( p2

1, a 2, p 2
2)} (42)

For the initial state we will take a normal bradyon ( p2
1 5 2 m 2). The final

state may have any of the ª massesº of equation (2) ( p2
2 5 2 esm

2).

Using (22), we get

(x 2 2 p 2
1)P

n 2 1( p2
1, x 2) 5 x 2n 2 p 2n

1 5 x 2n 2 ( 2 m 2)n

(x 2 2 p 2
2)P

n 2 1(x 2, p 2
2) 5 x 2n 2 p 2n

2 5 x 2n 2 ( 2 m 2)n
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so that

P n 2 1( p2
1, x 2)

x 2n 2 ( 2 m 2)n 5
1

x 2 1 m 2

P n 2 1(x 2, p 2
2)

x 2n 2 ( 2 m 2)n 5
1

x 2 2 p 2
2

5
1

x 2 1 esm
2 (43)

With these simplifications we can write

A1 5 8i ( 2 1)n e 1 ? p1 e 2 ? p e 3 ? p2
P n 2 1( p2, a 2)

( p2 1 m 2)(a 2 1 esm
2)

(44)

B1 5 8i ( 2 1)n e 1 ? p1

p 2 1 m 2 [ e 2 ? p e 3 ? p2P
n 2 2( p2, a 2, p 2

2)

1 e 3 ? p e 2 ? p2P
n 2 2 ( p2, b 2, p 2

2)]

1 4i ( 2 1)n e 1 ? p1 e 2 ? e 3

P n 2 1( p2, p 2
2)

p 2 1 m 2 (45)

We now gather together the A-matrix elements with similar terms from B
and C. For example, A1 with the first term of B1, a similar term from B4,

and the first term of C, etc. We have

A 81 5 8i ( 2 1)n 2 1 e 1 ? p1 e 2 ? p e 3 ? p2

( p2 1 m 2)(a 2 1 csm
2)

[P n 2 1 ( p2, a 2)

2 (a 2 2 p 2
2) P n 2 2( p2, a 2, p 2

2) 2 ( p2 2 p 2
1) P n 2 2( p2

1, p 2, a 2)

1 (a 2 2 p 2
2) ( p2 2 p 2

1) P n 2 2 ( p2
1, p 2, a 2, p 2

2)] (46)

By using the identity (21), it is not difficult to prove that the bracket in (46)

reduces to

[ ? ] 5 P n 2 1( p2
1, p 2

2) 5 P n 2 1( 2 m 2, 2 esm
2) 5 ( 2 m 2)n 2 1 P n 2 1 (1, es)

5 ( 2 m 2)n 2 1 o
n 2 1

l 5 0

e l
s 5 ( 2 1)n 2 1nm2(n 2 1) d 1, s (47)

[cf. equation (38)].

Finally, when the normalization factor is taken into account, we end up

with the n-independent normalized matrix elements

A1 5 8i
e 1 ? p1 e 2 ? p e 3 ? p2

( p2 1 m 2)(a 2 1 m 2)
d 1, s (48)

B1 5 2 4i
e 1 ? p1 e 2 ? e 3

p 2 1 m 2 d 1, s (49)
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The presence of the factor d 1,s in all matrix elements means that the states

with masses esm
2 (s Þ 1) cannot be produced by any combination of photons.

These ª abnormal statesº can only exist virtually, associated with internal
loops, where they are represented by the respective propagators.

On the other hand, for s 5 1, equations (48) and (49) represent the

matrix elements one would write directly for the double photon scattering

on a charged Klein±Gordon particle.

5. VIRTUAL PHOTONS AND CLOSED LOOPS

It is easy to see that virtual photons do not spoil the equivalence we

have found in Sections 3 and 4.

Let us take, for example, the production of a photon in the mutual

scattering of two charged particles (see Fig. 3).

The first-order vertex to be used at 1, 2, 3, 5, and 6 has the form
[compare with (12)]

J
m
1 5 ( 2 1)n 2 12ep m

a P n 2 1( p2
a, p 2

b) (50)

where pa and pb are (resp.) the momenta of the particle before and after the

interaction with the internal photon line. For the vertex 4 we use [compare

with (12)]

J
m
2 5 ( 2 1)n2e 2 e m P n 2 1( p2

a, p 2
b) 1 ( 2 1)n4e 2p m

a e ? pbP
n 2 2( p2

a, q 2, p 2
b)

1 ( 2 1)n4e 2p
m
b e ? paP

n 2 2 ( p2
a, p 2, p 2

b) (51)

The line p3 ® p4 contributes with a factor

2 2ep
m
3 P n 2 1( p2

3, p 2
4)

For p 2
3 5 2 m 2 and p 2

4 5 2 esm
2 we have [cf. (47)]

P n 2 1( 2 m 2, 2 esm
2) 5 ( 2 1)n 2 1nm2(n 2 1) d s,1

The factor nm2(n 2 1) disappears after normalization.

Fig. 3.
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The contribution of the line p1 ® p2 can be treated as a Compton effect

in which one of the photons is virtual. The steps shown in Section 3 can

then be repeated with only minor changes. The final result is again an n-
independent normalized matrix element.

As an example of a closed loop we will first take the second-order

photon (polarization) self-energy (Fig. 4).

For diagram A we will use the propagator (32) and the vertex equation

(50). (an integration on p m is tacit):

A 5 [2i ( 2 1)n 2 1p m P n 2 1( p2, q 2)]
( 2 1)ni

p 2n 2 ( 2 m 2)n

3 [2i ( 2 1)n 2 1 p n P n 2 1( p2, q 2)]
( 2 1)ni

q 2n 2 ( 2 m 2)n

A 5 4p m p n
P n 2 1( p2, q 2)P n 2 1(q 2, P 2)

( p2n 2 ( 2 m 2)n)(q 2n 2 ( 2 m 2)n)
(52)

For diagram B we use (32) and (51). We also note that p m is an integration

variable whose name can be chosen at will. We will take a symmetric expres-

sion in p and q:

B 5 ( 2 1)n4ip m p n F ( 2 1)niPn 2 2( p2, q 2, p 2)

p 2n 2 ( 2 m 2)n 1
( 2 1)niPn 2 2(q 2, p 2, q 2)

q 2n 2 ( 2 m 2)n G
1 ( 2 1)n2i h m n P

n 2 1( p2, q 2)
( 2 1)ni

p 2n 2 ( 2 m 2)n

B 5 2 2 h m n
P n 2 1( p2, p 2)

p 2n 2 ( 2 m 2)n

2 4p m p n F P n 2 2( p2, q 2, p 2)

p 2n 2 ( 2 m 2)n 1
P n 2 2(q 2, p 2, q 2)

q 2n 2 ( 2 m 2)n G (53)

Fig. 4.
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Adding together (52) and (53), we obtain

A 1 B 5 2 2 h m n
P n 2 1( p2, p 2)

p 2n 2 ( 2 m 2)n (54)

1
4p m p n

( p2n 2 ( 2 m 2)n)(q 2n 2 ( 2 m 2)n)
[ ? ]

where

[ ? ] 5 (P n 2 1( p2, q 2))2 2 (q 2n 2 ( 2 m 2))P n 2 2( p2, q 2, p 2)

2 ( p2n 2 ( 2 m 2))P n 2 2(q 2, p 2, q 2)

But [cf. (29) and (30)]

P n 2 2( p2, q 2, p 2) 1 P n 2 2(q 2, p 2, q 2)

5 n o
n 2 2

s 5 0

p 2sq 2(n 2 2) 2 2s 5 nPn 2 2( p2, q 2)

q 2nP n 2 2( p2, q 2, p 2) 1 p 2nP n 2 2(q 2, p 2, q 2)

5 n o
n 2 2

s 5 0
(s 1 1)( p2sq 2(n 2 2) 2 2s 1 q 2sp 2(n 2 2) 2 2s)

so that

[ ? ] 5 nPn 2 2( p2, q 2) 2 o
n 2 2

s5 0
(n 2 1 2 s) ( p2(2n 2 2 2 s)q 2s 1 q 2(2n 2 2 2 s))

2 o
n 2 2

s 5 0

(s 1 1)( p2sq 2(2n 2 2 2 s) 1 q 2sp 2(2n 2 2 2 s)) 1 n ( 2 m 2)nP n 2 2( p2, q 2)

5 nPn 2 2 ( p2, q 2) 2 n o
n 2 2

s 5 0
( p2sq 2(2n 2 2 2 s) 1 p 2(2n 2 2 2 s))

1 n ( 2 m 2)nP n 2 2( p2, q 2)

[ ? ] 5 nP2n 2 2( p2, q 2) 2 nP2n 2 2( p2, q 2) 1 np2(n 2 1) q 2(n 2 1)

1 n ( 2 m 2)nP n 2 2( p2, q 2)

i.e. [cf. equation (27)]

[ ? ] 5 o
n

s 5 1

P n 2 1( p2, 2 esm
2)P n 2 1(q 2, 2 esm

2) (55)
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Using (55), (43), and (33) (with a 5 p 2 and x 5 2 m 2), we can write (54) as

A 1 B 5 o
n

s 5 1 H 4p m p n
1

p 2 1 esm
2

1

q 2 1 esm
2 2 2 h m n

1

p 2 1 esm
2 J (56)

It can be said that the loops A and B split into n independent loops:

As 1 Bs 5 4p m p n
1

p 2 1 esm
2

1

q 2 1 esm
2

2 2 h m n
1

p 2 1 esm
2 (s 5 1, 2, . . . , n) (57)

Each of these loops corresponds to a particular second-order mode of propaga-
tion and is completely independent of the other modes.

6. FUNCTIONAL PROOF

In the preceding section we have seen an algebraic way to prove the
equivalence for a given order of the perturbative expansion of the nth-order

equation (5) [or (7)] and a set of n independent Klein±Gordon equations

with mass parameters determined by (2). All the scalar fields are minimally

coupled to the electromagnetic potential.

However, for the sake of completeness, it is convenient to have a general

proof. To this aim we will now introduce functional methods (Faddeev and
Slavnov, 1970).

Let us consider a field w obeying an equation of the form

4( c ) w 5 0 (58)

where 4( c ) is an operator depending on another field c (or set of fields c a).
For example [cf. equation (5)]

4(A ) 5 N8n 2 m 2n (59)

Let 4 have an inverse 4 2 1, defined by boundary conditions on the solutions

of (58).

Let ]()) be the generating functional or partition function related to (58):

]()) 5 # $ w exp F i # dx 1 12 w 4 w 1 ) w 2 G (60)

) is an external source and for the sake of simplicity we are going to ignore

the degrees of freedom related to c .



2872 Bollini, Oxman, and Rocca

The exponent in (60) is a quadratic function of w . We can then use the

functional Gaussian formula (Nishijima, 1969)

# $ x exp F i # dx 1 12 x 3 x 1 )x 2 G 5
18

| 3 | 2
exp F 2 i # dx

1

2
)3 2 1) G (61)

where | 3 | is the functional determinant of the operator P, and 18 is an

irrelevant normalization constant.
Now, let 4 have the factorizability property:

4 5 41 ? 42; [41, 42] 5 0 (62)

and also the separability property:

4 2 1 5 a 42 1
1 1 b 4 2 1

2 (63)

where a and b are constants.

From (62) it follows that

| 4| 5 | 41 | ? | 42 | (64)

From (60)±(64) we deduce

]()) 5
18

| 4 | 2
exp F 2 i # dx

1

2
)4 2 1)G

5
18

| 41 | 2 | 42 | 2
exp F 2 i # dx

1

2
)( a 14

2 1
1 1 a 24

2 1
2 ))G

]()) 5 18
1

| 41 | 2
exp F 2 i # dx

1

2
) a 42 1

1 )G
3

1

| 42 | 2
exp F 2 i # dx

1

2
) b 4 2 1

2 )G (65)

We now introduce two independent scalar fields w j ( j 5 1, 2) and use (61)
in the form

# $ w j exp F i # dx 1 12 w j a 2 1
j 4j w j 1 )w j 2 G

5
1j

| 4j | 2
exp F 2 i # dx

1

2
)a j4

2 1
j )G (66)
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so that from (60) and (65) we get

]()) 5 1 # $ w 1 $ w 2

3 exp F i # dx 1 12 w 1 a 2 1
1 41 w 1 1

1

2
w 2 a 2 1

2 42 w 2) 1 )( w 1 1 w 2) G (67)

]()) 5 1]Ä ()) (68)

where ]Ä is the partition functional defined by the right-hand side of (67).

Equation (68) [or (67)] tells us that it is equivalent to say that we have

a scalar field obeying (58), or two independent scalar fields w j obeying
the equations

4j w j 5 0; j 5 1, 2 (69)

Note that for the equivalence to hold, it is not enough to have the factorizability

property (62). It is also necessary that the separability condition (63) be

satisfied. As an example we can take (5):

4 5 N8n 2 m 2n (70)

and the identity (22)

(N8 2 m 2) P n 2 1(N8, m 2) 5 N8n 2 m 2n (71)

Equation (71) is a factorization of (70):

4 5 41 ? 42

41 5 N8 2 m 2; 42 5 P n 2 1(N8, m 2)

However, it is not possible to write 4 2 1 as a linear combination of

42 1
1 and 4 2 1

2 (except for n 5 2).

Nevertheless, it is easy to see that the equivalence theorem can be

extended to the case in which the factorization is multiple, i.e., when we

can write

4 5 &
n

1
4j (72)

At the same time the separability condition holds in the form

42 1 5 o
n

1

a j4
2 1
j (73)
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For (5) we have the factorization (2):

N8n 2 m 2n 5 &
n

s 5 1
(N8 2 esm

2) (74)

and the separability property (33):

(N8
n

2 m 2n) 2 1 5
1

nm2(n 2 1) o
n

s5 1

es(N8 2 esm
2) 2 1 (75)

so that in fact the higher order theory based on (5) is equivalent to n indepen-

dent second-order theories based on

(N8 2 esm
2) w s 5 0; s 5 1, 2, . . . , n (76)

7. DISCUSSION

A higher order equation such as (7) implies several modes of propagation

for the field w . The evolution can be treated perturbatively, as a sum of

different orders in the coupling constant. There are 2n basic couplings with

the electromagnetic field [cf. equation (6)], whose form can be determined
algebraically. Important parts of these interactions are the vertex coefficients,

whose interesting properties are described in Section 2.

The interaction seems to be of the unrenormalizable type, due to the

powers of the momenta carried by the P-coefficients. However, the propagator

has also a higher power of p 2 in the denominator. By power counting it turns

out that the theory is renormalizable. Furthermore, we have shown that the
matrix elements corresponding to any process between photons and charged

higher order particles can be algebraically reduced to the matrix elements

for the interaction between photons and fields obeying second-order equa-

tions. This reduction confirms renormalizability and at the same time allows

one to established unitarity for the higher order theory.

In fact, the only field to be found asymptotically as a free particle is
the bradyon [s 5 1 in (76)]. All other fields have a half-advanced and

half-retarded propagator (Bollini et al., 1994). This propagator was used by

Wheeler and Feynman (1945) to describe the electromagnetic interaction in

a charged medium which was supposed to be a perfect absorber. Later, the

same authors showed that, in spite of the advanced part it contains, this Green

function does not contradict causality (Wheeler and Feynman, 1949). Several
interesting properties of the Wheeler Green function (including unitarity) are

discussed at length in Bollini and Rocca (1997). This function has an on-

shell zero. Accordingly, the corresponding fields cannot appear asymptotically

in free states. They only appear in closed loops. Furthermore, for each closed
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loop corresponding to a mass parameter esm
2 with s Þ 1, there is another

equal closed loop with the complex conjugate mass parameter esm
2. As a

result, the sum of both closed loops contributes with a real function to the
amplitude for the process (the Wheeler propagator is a real Green function).

Then, all closed loops with s Þ 1 give a purely dispersive amplitude. The

only absorptive part comes from the bradyon, as it should.

The general proof of Section 6 shows that the equivalence holds for

any theory which is both factorizable and separable, i.e., when the equation

of motion can be decomposed into two or more factors, and the corresponding
propagator can be expressed as a linear combination of the propagators for

each of the factors.

It is also clear that practically the same equivalence theorem holds when

we consider, instead of a U (1) abelian group, a more general group with the

corresponding gauge fields.
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